Infignos Media -- buyersUSA Consulting
15 Radio Streams
Click Here
Build your Business
Advertise Here

From Government, Legal and Policy - Higher Education

Brought to you by Doc's Furniture

Good used furniture,antiques & collectibles. Located on the corner of Hwy 202 & 300 1st Ave. W. (Anniston) Open Mon-Sat 9-5. Call 256-310-8223

Eating for Health

International Team Sequences Wheat Genome

Wed, 14 Nov 2012 14:12:42 EST

National Science Foundation-funded researchers help reveal exceptionally complex genome

Scientists from the United States, United Kingdom and Germany recently completed the first analysis of the bread wheat genome, one of the "big three" global crops upon which mankind depends for nutrition.

The work is a major breakthrough in understanding an exceptionally large and complex genome, and it lays strong foundations for improving wheat through breeding practices and genetic engineering, say researchers.

"The genome sequence provides a new and very powerful tool not only for basic research but also for breeding future generations of wheat more quickly and more attuned to local environmental conditions," said John C. Wingfield, assistant director of the National Science Foundation's Directorate for Biological Sciences.

"Wheat is a seminally important crop along with rice and corn. This international effort that includes NSF-supported scientists leveraged funding and resources from across the globe to support the broader wheat research community," said Wingfield.

NSF's Division of Integrative Organismal Systems through its Plant Genome Research Program funded research in the United States conducted at Cold Spring Harbor Laboratory in New York and at University of California, Davis. Details of the genomic analysis are in this week's Nature magazine.

The research involved identifying essentially all 94,000-96,000 wheat genes and mapping their relationships to other genes. The advance will allow scientists to accelerate breeding and discover new genes that control important traits such as disease resistance and drought tolerance.

Previously, the size and complexity of the wheat genome had been significant barriers to performing a complete analysis. But, the researchers were able to make rapid progress by developing a new strategy that compared wheat sequences to known grass genes--from rice and barley, for example.

Then they compared these known grass genes to direct ancestors of wheat, whose genomes are much simpler than modern wheat cereal grasses. This revealed a highly dynamic genome.

"The raw data of the wheat genome is like having tens of billions of scrabble letters," said Neil Hall, a lead researcher at the University of Liverpool's Centre for Genome Research in the United Kingdom. "You know which letters are present and their quantities, but they need to be assembled on the board in the right sequence before you can spell out their order into genes."

The gene comparison also revealed a wheat genome that has undergone genetic loss as a consequence of domestication.

Archeological and genetic evidence points to the South Caspian Basin near Iran and Azerbaijan as the origin of bread wheat cultivation about 8,000 years ago. Its cultivation is directly associated with the rapid spread of settled societies.

Today, wheat is one of the most widely cultivated crops due to its adaptability, high yields and nutritional and processing qualities. But new diseases and sub-optimal growing conditions have steadily reduced yields, increased prices and reduced reserves.

In addition, genetic variation in current, cultivated wheat varieties has been fully exploited by breeders, slowing increases in yield during the last 40 years.

The researchers anticipate the analysis will reverse the trend.

"The analysis has translated this genetic data into accessible tools that will accelerate breeding and the discovery of varieties with better disease resistance and stress tolerance," said Klaus Mayer from the Helmholtz-Zentrum Munich, who studies environmental health issues in Germany and participated in the analysis.

The impact of the research already has been considerable because the authors provided the sequence and analyses directly to users in industry and academia to jumpstart uses as soon as the genome analysis was generated in August 2010.

The approach provides a publicly accessible database so that any breeder or researcher worldwide can access the necessary molecular tools to rationally construct improved wheat varieties, according to Peter Jack of RAGT Seeds, one of Europe's leading seeds suppliers.

"We approached this as perhaps the supreme challenge for genomic analysis with next-gen sequencing, and are delighted to have contributed to this first major step in the physical characterization of the wheat genome," said Richard McCombie, genetics professor at Cold Spring Harbor Laboratory.

"While we and our collaborators continue to work to enhance the resolution of our knowledge of the wheat genome, these results should have a significant impact on breeding efforts and further research studies of the wheat genomes and those of its wild relatives," McCombie said.

In addition to the National Science Foundation, the United States Department of Agriculture, the UK Biological and Biotechnological Sciences Research Council and the German Ministry of Education and Research supported the work.

In addition to the institutions mentioned above, the University of Bristol, as well as the John Innes Centre Norwich and the European Bioinformatics Institute in the United Kingdom were instrumental in the outcome of the research.

he National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Useful NSF Web Sites:
NSF Home Page:
NSF News:
For the News Media:
Science and Engineering Statistics:
Awards Searches:

Source: WebWire

From Our Blogs

Fun DIY Projects for Back to School

Personalizing and accessorizing school supplies, lockers and work spaces can be a simple antidote.

Tips to Save for College

More than a few households are coping with “sticker shock” when it comes to higher education costs.

$17.33 Per Hour = Happiness?

New Research Shows Happiness Doesn't Increase over $69,300 in Alabama

Help Kids Stay Organized for a Fresh Start this School Year

By studying smarter, staying organized and keeping motivated, students can learn to juggle it all.

Sign up for our weekly newsletter.

Our Website Sponsors

ERA King Real Estate

We bring the world to Alabama's doorstep. Offices in Birmingham, Anniston, Gadsden, and Lincoln. Call us at 256-831-5656 or visit us at

Artificial Limb & Brace

At Artificial Limb & Brace Center, it is our mission to provide people with orthotic and prosthetic services and products using the most reliable technology to give them the best results possible. Call us at 256-236-2562.

The Party Center

Everything you need for your next party! Specializing in items for your birthdays, weddings, anniversaries, and all holidays and special occasions. Located at 1716 Hamric Drive East in Oxford. Call 256-831-4449.

Transformation Technologies

Improve your golf scores. View our free 16 minute golf course at

Oxford Lumber

Neighborhood service and warehouse prices since 1958. We're also proud to own and operate Roanoke Ace Home Center, Talladega Ace Home Center and Jacksonville Home Center. Oxford Lumber is located at 1400 Barry Street. Call 256-831-0540